Posted on Categories Vídeos
Priscila Magalhaes Ribeiro - Petrobras
Posted on Categories Vídeos
Pablo Machado Barros - Petrobras
Posted on Categories Vídeos
Guillaume Durance - Total Energies
Posted on Categories Vídeos
Sylvia dos Anjos - COPPE/UFRJ
Diretora da ABGP
Diretora da ABGP
Posted on Categories Vídeos
Pedro Mário Cruz e Silva - NVIDIA
Posted on Categories Vídeos
Felix T. T. Gonçalves - COPPE/UFRJ
Posted on Categories Vídeos
Reconstructing fluid mechanics problems from partial data is essential in science and engineering, especially regarding optimal design, biomedical and geophysical flows, parameter estimation, and more. These inverse problems are often ill-posed; thus, it's challenging (sometimes even impossible) to solve them using traditional methods. Moreover, generating simulated data for ill-posed inverse problems can become very costly since simulations must be performed several times to either discover missing physics or calibrate the free parameters in the model. We'll show a physics-informed neural network framework for reconstructing two examples of complex fluid mechanics problems: gravity currents and bubble dynamics. It reconstructs the other missing fields (velocity, pressure, etc.), given a set of sparse partial data, such as heavy fluid concentration in gravity currents or snapshots of the bubble position. We also discuss optimal sensor placement and dimensionality reduction for gravity current.
Alvaro Coutinho Professor, COPPE/UFRJ
Posted on Categories Vídeos
RISC2 (https://www.risc2-project.eu) é um projeto de colaboracao em HPC entre a América Latina e a União Europeia, que objetiva criar uma rede de apoio para coordenar as ações em HPC.
https://www.youtube.com/watch?v=sJXrSJIjhQI&t=32s
https://www.youtube.com/watch?v=sJXrSJIjhQI&t=32s