MACHINE LEARNING FOR FACIES CLASSIFICATION OF PRE-SALT BOREHOLE IMAGES

Laura Lima Angelo dos Santos

Um dos processos mais relevantes na interpretação geológica de dados petrofísicos é análise faciológica das Imagens de Poço, como uma abordagem descritiva para extração de informações texturais e estruturais, de ambientes deposicionais, estratigrafia de sequencias – necessários para compreçã da geodinâmica da bacia.
Com o objetivo de aumentar a acurácia da interpretação geológica, essa dissertação discute as rotinas padrão de classificação a partir de dados petrofísicos e propõe novos e mais efixientes práticas.
Neste trabalho, propusemos e comparamos quatro diferentes fluxos de trabalho, com diferentes complexidades, a fim de encontrar o balanço adequado entre volume de dados classificados e complexidade dos modelos de aprendizado de máquina. Esta comparação incluiu: 1\ Aprendizado de máquina em perfis de poço unidimensionais; 2\ Aprendizado de máquina em propriedades texturais extraídas das imagens de poço; 3\ Rede neural convolucional rasa nas imagens de poço; 4\ Rede neural residual (ResNet) em imagens de poço.
Os modelos com menor e maior complexidade apresentaram menor acurácia, com o modelo convolucional raso obtendo os melhores resultados.

http://www.coc.ufrj.br/pt/dissertacoes-de-mestrado/625-msc-pt-2021/9679-laura-lima-angelo-dos-santos-3

Deixe um comentário

Your email address will not be published.

You may use these <abbr title="HyperText Markup Language">html</abbr> tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>

*